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This paper is concerned with the nonlinear interaction and development of a pair of
oblique Tollmien–Schlichting waves which travel with equal but opposite angles to
the free stream in a boundary layer. Our approach is based on high-Reynolds-number
asymptotic methods. The so-called ‘upper-branch’ scaling is adopted so that there
exists a well-defined critical layer, i.e. a thin region surrounding the level at which the
basic flow velocity equals the phase velocity of the waves. We show that following
the initial linear growth, the disturbance evolves through several distinct nonlinear
stages. In the first of these, nonlinearity only affects the phase angle of the amplitude
of the disturbance, causing rapid wavelength shortening, while the modulus of the
amplitude still grows exponentially as in the linear regime. The second stage starts
when the wavelength shortening produces a back reaction on the development of
the modulus. The phase angle and the modulus then evolve on different spatial
scales, and are governed by two coupled nonlinear equations. The solution to these
equations develops a singularity at a finite distance downstream. As a result, the
disturbance enters the third stage in which it evolves over a faster spatial scale, and
the critical layer becomes both non-equilibrium and viscous in nature, in contrast to
the two previous stages, where the critical layer is in equilibrium and purely viscosity
dominated. In this stage, the development is governed by an amplitude equation
with the same nonlinear term as that derived by Wu, Lee & Cowley (1993) for the
interaction between a pair of Rayleigh waves. The solution develops a new singularity,
leading to the fourth stage where the flow is governed by the fully nonlinear three-
dimensional inviscid triple-deck equations. It is suggested that the stages of evolution
revealed here may characterize the so-called ‘oblique breakdown’ in a boundary layer.
A discussion of the extension of the analysis to include the resonant-triad interaction
is given.

1. Introduction
Laminar–turbulent transition in an incompressible flat-plate boundary layer usu-

ally involves a predominantly two-dimensional linear stage, followed by a three-
dimensional stage in which nonlinear effects become significant. Since turbulence can
be sustained only when it is three-dimensional (if there is no external force), the latter
stage is of fundamental importance for understanding transition to turbulence.



362 X. Wu, S. J. Leib and M. E. Goldstein

The initial development of three-dimensional effects is often due to a resonant
interaction between a two-dimensional fundamental disturbance and a pair of oblique
instability waves, with equal but opposite spanwise wavenumbers. The resonance can
cause the oblique waves to become large enough to interact with themselves so that
the dominant nonlinear activity becomes the self-interaction between a pair of oblique
Tollmien–Schlichting (T-S) waves. Certain flow structures, such as streamwise vortices
and high-shear layers, which are believed to be crucial for the generation of small-
scale turbulence, have been attributed to such an interaction. Alternatively, transition
can also be induced by directly introducing a pair of oblique T-S modes into the
flow, bypassing the initial two-dimensional stage. This is the so-called oblique-mode
breakdown.

A completely self-consistent theoretical analysis of such processes can strictly be
carried out only in the context of a high-Reynolds-number asymptotic approach. Such
an approach allows the systematic inclusion of nonlinear, non-parallel etc. effects.

In incompressible boundary layers, the linear instability wave growth rate in the
majority of the unstable range is small compared with its wavelength. As such, the
initial nonlinear interactions will occur in the critical layer surrounding the transverse
position where the mean flow velocity is equal to the phase speed. Even in more
unstable flows viscous spreading of the mean flow can often cause the growth rate to
be relatively small by the time nonlinear effects come into play so that the latter are
initially confined to the critical layer.

The nonlinear interaction of a pair of oblique instability waves was first considered
by Goldstein & Choi (1989) for Rayleigh waves in a free shear layer. They studied
such an interaction in the non-equilibrium critical layer regime, and showed that
the nonlinear evolution of the oblique wave amplitude is governed by an integro–
differential equation, of the type first derived by Hickernell (1984) in a somewhat
different context. In the inviscid case they considered, their results showed that the
solution to this equation ends in a singularity at a finite downstream position. The
rapid growth of the amplitude as the singularity is approached is now often referred
to as ‘explosive growth’. Their analysis also showed that the critical-layer interaction
produces a relatively large mean-flow distortion in the whole flow field.

The analysis of Goldstein & Choi (1989) was extended to include the effects of
viscosity by Wu, Lee & Cowley (1993) who found that the amplitude of the waves
either ends in the same singularity as the inviscid case, or undergoes exponential decay
after reaching a peak, depending upon the parameter values. They further showed
that in the latter case, the nonlinearly induced mean flow still grows algebraically.

Since the critical-layer nonlinearity is generic and not dependent upon the details
of the mean flow, essentially the same integro–differential equation describes the
amplitude of a pair of oblique waves in any inviscidly unstable flow. For instance, Leib
& Lee (1995) considered the case of a two-dimensional supersonic boundary layer,
while Wundrow & Goldstein (1994) and Goldstein & Wundrow (1995) considered
a weakly three-dimensional subsonic boundary layer. In both these cases, the rapid
growth of the amplitude to form a singularity and the development of a relatively
large mean-flow distortion are the dominant features of the interaction.

Smith, Brown & Brown (1993) considered similar interactions in the equilibrium
critical layer regime relating to the start-up of the wave/vortex interaction. This
analysis was extended to the unequal-amplitude case by Brown & Smith (1996).

In an incompressible plane Blasius boundary layer or a plane Poiseuille flow,
transition occurs due to the nonlinear development of viscous T-S waves. Hall &
Smith (1989) and Smith & Blennerhassett (1992) investigated the nonlinear interaction
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of a pair of oblique T-S waves which are close to the lower branch of the neutral
curve. One of their important findings is that the interaction between the waves
can drive a very large spanwise-dependent mean-flow distortion, and as a result the
dominant nonlinear interaction is between the wave and the induced mean flow,
while the harmonic does not play an active role. Hall & Smith (1989) refer to
such a feature as wave/vortex interaction. Blackaby (1994) and Davis & Smith
(1994) further considered this type of T-S wave/vortex interaction in hypersonic and
three-dimensional incompressible boundary layers, respectively.

Another approach to analysing instability wave interactions is by direct numerical
simulations using the Navier–Stokes equations. For example, simulations of oblique
wave interactions in a Blasius boundary layer were performed by Joslin, Streett &
Chang (1993). They found that the interactions can induce an enhanced growth
provided that initial amplitudes are sufficiently high. Simulations in a low-supersonic-
Mach-number flat plate boundary layer have been carried out by, among others,
Fasel, Thumm & Bestek (1993) (see references therein). The simulations show
that the oblique wave interaction generates a strong spanwise-dependent mean-flow
distortion, consistent with the prediction of the asymptotic theory.

On the other hand, Schmid & Henningson (1992a, b) simulated the transition
initiated by a pair of oblique waves in the plane Poiseuille flow in the sub-critical
Reynolds number range. They find that both spanwise-dependent and spanwise-
independent mean flows undergo significant growth, but they attribute such a growth
to a linear mechanism. Also, in their calculations the spanwise-independent mean flow
is found to be one order of magnitude larger than the spanwise-dependent mean flow.

In this paper, we study the interaction between a pair of oblique T-S modes
in the Blasius boundary layer. However, unlike Hall & Smith (1989) and Smith
& Blennerhassett (1992), we now consider the upper-branch scaling regime. This
is motivated by the fact that in most experiments on boundary-layer transition,
significant nonlinear activities do not take place until the upper branch is approached
(e.g. Klebanoff, Tidstrom & Sargent 1962; Kachanov & Levchenko 1984; Corke
& Mangano 1989). Mathematically, analytical progress in the upper-branch scaling
regime becomes more feasible because the linear growth rate is asymptotically smaller
than the wavenumber. Furthermore, as pointed out by Goldstein & Durbin (1986),
this scaling applies to almost the entire linearly unstable region, including the overlap
domain between the upper- and lower-branch regions, i.e. the high-frequency limit
of the lower-branch scaling. In contrast, weakly nonlinear analyses based on the
lower-branch scaling are valid only in an asymptotically small neighbourhood of the
lower-branch. We are aware of the fact that the upper-branch asymptotics do not
approximate the linear growth rate accurately enough at moderately high Reynolds
numbers† (Reid 1965; Healey 1994). However, the nonlinear growth rates should
not be subject to such inaccuracy and the quantitative behaviour of the solution in
the nonlinear regime should only be minimally affected by the linear result. This
is because the size of the linear growth rate simply shifts the streamwise location
at which nonlinearity comes into play, and once entering the nonlinear regime the
nonlinear growth rate quickly overtakes the linear one. We expect the nonlinear
growth rates to be more accurately predicted than the linear growth rates because
the former eventually become larger than the latter and therefore correspond, in

† L. Hultgren (1996, private communication) has found that by renormalizing the asymptotic
results, it is possible to achieve significant improvement in the accuracy of the linear asymptotic
theory.
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effect, to a lower-order term in the asymptotic expansion. The main reason for the
inaccuracy of the linear theory is that the growth rates, which correspond to the
imaginary part of the wavenumber, are of much higher order than the wavenumber
itself. Also, although a finite-Reynolds-number approach, i.e. the Orr–Sommerfeld
equation, gives a good approximation to a linear growth rate, it seems impossible, in
this framework, to extend weakly nonlinear theory to an unbounded flow such as a
boundary layer. This is because there is a fundamental difficulty in accommodating
the nonlinearly induced mean flow on a finite-Reynolds-number basis. We believe
that a high-Reynolds-number asymptotic approach must be used in order to analyse
rigorously the oblique-mode interactions in a boundary layer.

The rest of the paper is organized as follows. In §2, the problem is formulated and
the linear solution is presented. The first nonlinear stage is considered in §3, where we
show that nonlinearity only affects the wavelength while leaving the modulus of the
disturbance to evolve linearly. Since the analysis in these two sections is, for the most
part, contained in previous work, details are omitted from the present paper. In §4, we
show that the continuing wavelength alteration will eventually have an impact on the
modulus, leading the disturbance into the second nonlinear stage where the amplitude
function takes a WKBJ form with the phase and the modulus evolving over different
streamwise length scales. By a detailed analysis of the nonlinear dynamics within the
critical layer and the diffusion layer, we derive the coupled equations governing the
development of the phase and the modulus. It is shown that the solution to these
equations develops a singularity at a finite distance downstream. In §5, by analysing
the scaling change associated with the formation of the singularity, we show that in
the vicinity of the singularity, the disturbance enters a third stage where the waves
evolve over a faster streamwise scale than in the previous stage and non-equilibrium
critical layer effects influence the development. By observing the similarity between
the present problem and the related problem on Rayleigh waves considered by Wu
et al. (1993), it is found that the governing amplitude equation in this stage is the
same as that in the Rayleigh problem but without the linear growth term. The
appropriate initial condition for this stage is derived by matching with the previous
stage and in Appendix B we show that this condition is consistent with the amplitude
equation. The amplitude equation is solved numerically, and it is found that the
solution develops another finite-distance singularity. The latter is the same as that
originally found by Goldstein & Choi (1989) and leads to a strongly nonlinear stage,
governed by the unsteady three-dimensional inviscid triple-deck equations. This final
stage is highlighted in §6.

It had previously been suggested (Goldstein 1994; Lee 1994) that the continued
wavelength shortening caused by the initial nonlinear stage could lead to a stage with
a non-equilibrium nonlinear critical layer with the amplitude governed by a limiting
form of the equation derived by Wu et al. (1993). The present analysis shows that this
is indeed the case. In fact, it is shown in Appendix C that all the weakly nonlinear
stages through which the oblique T-S waves evolve are governed by limiting forms of
the amplitude equation derived by Wu et al. (1993) for the nonlinear non-equilibrium
viscous critical layer regime. In §7 we discuss the implications of this and draw some
general conclusions from the results of our analysis.

2. Formulation and linear solutions
The basic flow is taken to be the incompressible Blasius boundary layer on a flat

plate. It is described in terms of Cartesian coordinates (x, y, z) with origin at a point
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on the plate a (dimensional) distance L downstream from the leading edge, where x
and y are along and normal to the plate respectively, and z is the spanwise direction.
The velocity, length, time and pressure are normalized by U∞, δ∗, δ∗/U∞ and ρU2

∞
respectively, where U∞ is the free-stream velocity, ρ is the fluid density, ν is the
kinematic viscosity, and δ∗ = (νL/U∞)1/2 is the boundary-layer thickness at x = 0.
The local Reynolds number is R = U∞δ

∗/ν. The basic-flow profile close to the wall
has the asymptotic behaviour

UB ∼ λy + λ4y
4 + . . . as y → 0, (2.1)

where λ4 = −λ2/48. Strictly speaking, λ depends on the slow streamwise variable
x/R. But to the order of approximation in the present paper, it can be treated as
constant with λ ≈ 0.332.

Let us suppose that a pair of oblique T-S waves with a common dimensional
frequency Ω, modulated in the streamwise direction, are superimposed upon this base
flow. The upper-branch regime for the Blasius boundary layer corresponds to the
scaling†

R ∼ (Ων/U2
∞)−5/6 . (2.2)

It is convenient to introduce a small parameter

σ = R−1/10 ,

and to define a scaled frequency ω = σ−12(Ων/U2
∞). Linear theory (e.g. Bodonyi &

Smith 1981) suggests the introduction of scaled coordinates

X = σαx− σ2ωt , Z = σβz , x1 = σ4c−1x , (2.3)

where X and Z are ‘fast’ variables describing the oscillation and the spanwise variation
of T-S waves respectively, while x1 is an appropriate ‘slow’ variable describing the
growth of the T-S waves. The parameters α and β are the scaled streamwise and
spanwise wavenumbers respectively, and c is the phase speed of the disturbance. We
thus have the multiple-scale substitutions:

∂

∂t
→ −σ2ω

∂

∂X
,

∂

∂x
→ σα

∂

∂X
+ σ4c−1 ∂

∂x1

,
∂

∂z
→ σβ

∂

∂Z
. (2.4)

In addition, the wavenumber α and the phase speed c expand in the form

α = α0 + σα1 + σ2α2 + σ3 ln σα3L , (2.5)

c = ω/α = c0 + σc1 + . . . , with c0 = ω/α0 , etc. (2.6)

However, we shall only need to retain leading-order terms in the expansions as
higher-order ones do not affect the nonlinear interactions considered in this paper. In
terms of the above scaled variables, the disturbance in the main part of the boundary
layer, to leading order, takes the form

u=εA(x1)ū1(y) eiX cosZ + c.c.+ . . . , (2.7)

v=−εσγ iA(x1)v̄1(y) eiX cosZ + c.c.+ . . . , (2.8)

† After minor modifications to the asymptotic scalings, our analysis is also applicable to boundary
layers driven by pressure gradients. For example, for a boundary layer with a favourable pressure
gradient, the appropriate scaling is R ∼ (Ων/U2

∞)−3/4 (e.g. Reid 1965; Smith & Bodonyi 1982). This
scaling is also relevant to boundary layers with adverse pressure gradients, but only for disturbances
with wavelengths much longer than those of the most unstable modes.
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w=εA(x1)w̄1(y) eiX sinZ + c.c.+ . . . , (2.9)

p=εσA(x1)p̄1(y) eiX cosZ + c.c.+ . . . , (2.10)

where ε is a measure of the magnitude of the disturbance, and A(x1) is the (scaled)
amplitude function describing the slow downstream development of the disturbance.
For convenience, we have defined

γ = (α2
0 + β2)1/2 .

Here and below c.c. represents the complex conjugate.
As pointed out by Bodonyi & Smith (1981), the linear instability problem is

described by a multi-layer structure with five asymptotic regions: the potential-flow
zone (I), the main layer (II), the Tollmien layer (III), the Stokes layer (IV), and the
critical layer (V). These layers have thickness of order σ−1, 1, σ, σ4 and σ3 respectively.
We obtain the solution in each of the regions by expanding in terms of the small
parameter σ. This procedure† can be carried out along the lines of Bodonyi & Smith
(1981), and was followed by Wu, Stewart & Cowley (1996) and Wu (1993). Some
details can be found in the first paper. Matching between different zones gives the
leading-order dispersion relation

λc0 = γ , (2.11)

and the growth rate

c−1
0 (cos θ + sec θ)A′/A = −2µc0Yc(∆φ) + λ2(2α0c0)

−1/2 + i χ , (2.12)

where

θ = sin−1 β/γ , Yc = c0/λ , µ = −c2
0/4 . (2.13)

The first term on the right-hand side of (2.12) is the jump across the critical layer,
while the second term is the viscous growth rate produced by the Stokes layer adjacent
to the wall. In the linear regime,

∆φ = −π .
The parameter χ in (2.12) is a real number. It represents an O(σ3) correction to the
wavenumber, and can be conveniently absorbed into the carrier wave eiX by adding
the term of σ3(cos θ + sec θ)−1χ into (2.5).

3. Nonlinear stage I: wavelength ‘shortening’
The first nonlinear regime is reached when the nonlinear effect on the modulation

of the disturbance is at the same order as the linear effect. This occurs when (cf.
Mankbadi et al. 1993)

ε = σ8 . (3.1)

The analysis of interactions in this regime is essentially contained in Wu (1993)
and Mankbadi, Wu & Lee (1993) in their studies of a subharmonic resonant triad.
It is shown there that when nonlinear effects are included two extras layers, namely
a diffusion layer (VI) sandwiching the critical level and a buffer layer (VII) adjacent
to the wall, have to be introduced in order to accommodate the induced spanwise-
dependent mean-flow distortion. The disturbance is thus described by a seven-zoned
structure. Dominant nonlinear effects arise from the critical layer (V) and the diffusion

† A different but somewhat related approach was used by Mankbadi, Wu & Lee (1993) and
Goldstein & Lee (1992).
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Figure 1. The region of the parameters (γ, θ) over which oblique modes are unstable.

layer (VI), while the wall-buffer layer (VII) plays a passive role. The amplitude
equation is

dA

dx1

= κA+ i ΥA

∫ +∞

0

|A(x1 − ζ)|2 dζ , (3.2)

where

κ = c0(cos θ + sec θ)−1
[
λ2(2α0c0)

−1/2 + 2c2
0λ
−1µπ

]
, (3.3)

Υ = −
(

2
3

)2/3
Γ
(

1
3

)
πγ2c5

0λ
1/3α

1/3
0 sin4θ cos 2θ(cos θ + sec θ)−1 . (3.4)

These results were obtained by extending the analysis of Wu (1993) and Mankbadi
et al. (1993) to allow for the fact that θ is no longer restricted to 60◦ but can vary
arbitrarily in the present study. Equation (3.2) is subject to the initial condition

A→ A0 eκx1 as x1 → −∞ ,

in order to ensure that the solution matches to the linear stage upstream.
The linear growth rate κ depends on θ, the obliqueness angle. Since we are only

interested in growing modes, we require κ > 0. It follows from (3.3), (2.11) and (2.13)
that θ must satisfy

cos θ < 2λ15/(π2γ10) .

The above condition is satisfied for any θ if γ 6 γc ≡ 21/10π−1/5λ3/2. However, if
γ > γc, then κ is positive only for waves which are sufficiently oblique with

θ > cos−1(2π−2λ15γ−10) .

In the parameter space (γ, θ), the region in which oblique modes are unstable is
indicated in figure 1.

The nonlinear term arises from an interaction between the oblique modes and the
induced spanwise-dependent mean flow, characteristic of wave–vortex interactions.
However, unlike the lower-branch scaling (cf. Smith & Blennerhassett 1992), the coef-
ficient of the nonlinear term is purely imaginary in the present upper-branch-scaling
regime. An important consequence is that only the phase angle of the amplitude
function is affected by nonlinearity, while its modulus still evolves exponentially, as
in the linear regime. In order to illustrate this more clearly, we write

A = |A| eiΘ(x1) .
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Then |A| and Θ(x1) satisfy

d|A|
dx1

= κ|A| , dΘ

dx1

= Υ

∫ +∞

0

|A(x1 − ζ)|2 dζ .

Obviously the modulus |A| and the phase Θ are decoupled, with the phase playing a
passive role. The above equations can be easily solved to give

|A| = |A0| eκx1 , Θ = Θ0 + Υ |A0|2 e2κx1 /(2κ)2 , (3.5)

and hence

A = |A0| eκx1+iΘ0+i Υ |A0|2 e2κx1 /(2κ)2

, (3.6)

where Θ0 = argA0, and shall be assumed to be zero without losing generality. Note
that Θ ′ can be regarded as the wavelength alteration due to nonlinear effects. The
second equation in (3.5) implies that the rate at which the wavelength ‘shortens’ is
exponential.

4. Nonlinear stage II: wavelength-shortening-induced nonlinearity
The rapid modulation of the phase will eventually have an impact on the develop-

ment of the modulus. This occurs when†

x1 = O(κ−1 log σ−3/8) , (4.1)

and we thus introduce the shifted coordinate

x̂ = x1 − κ−1 log σ−3/8 . (4.2)

For x̂ = O(1), the magnitude of the disturbance rises to

ε̂ = εσ−3/8 = σ61/8 . (4.3)

The disturbance in the main part of the flow still can be expanded as (2.7)–(2.10)
except that ε is replaced by ε̂. The amplitude function in this stage takes the WKBJ
form

A(x̂) = Â(x̂) ei Θ̂(x̂)/σ3/4

, (4.4)

as implied by (3.6). Then we have the multiple-scale substitution

∂

∂x
→ σα

∂

∂X
+ σ13/4c−1Θ̂ ′

∂

∂Θ̂
+ σ4c−1 ∂

∂x1

. (4.5)

It turns out that Θ̂ and Â should expand as

Θ̂ = Θ̂0 + σ1/2Θ̂1 , Â = Â0 + σ1/2Â1 + . . . . (4.6)

In the present stage, the evolution is described by the leading-order terms Â0 and Θ̂0.
However, the higher-order corrections, Â1 and Θ̂1, will become as important as Â0

and Θ̂0 towards the end of this stage, and hence will affect the matching with the
following stage, stage III. In order to simplify the algebra, we do not break up Θ̂ and

† Identifying this distinguished distance is part of the solution process. It involves a careful
consideration of the wavelength-shortening-induced velocity components (4.18) and (4.19), their
subsequent interaction with the leading-order wave components and the mean flow so induced, i.e.
(4.34) and (4.35). The scaling is derived by further analysing the related solutions in the diffusion
layer, (4.54), (4.62), (4.63) and (4.64), and their impact on the critical-layer dynamics (see the
comment below (4.64)).
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Â at the very beginning. Instead, we treat them as a whole and proceed to derive the
‘composite’ equations which are valid up to O(σ1/2) corrections. The equations for Â0

and Θ̂0, and Θ̂1 and Â1 will then be obtained by substituting (4.6) into the resulting
‘composite’ equations.

The overall flow structure remains the same as in stage I. Outside the critical
layer and the diffusion layer, the flow is linear up to the order of our interest. A
straightforward expansion in each of the layers and matching show that

i γc
−1
0 (cos θ + sec θ)

dΘ̂

dx̂
= c0(a

+ − a−) , (4.7)

γc−1
0 (cos θ + sec θ)

dÂ

dx̂
= c0(c

+ − c−) , (4.8)

where the jumps (a+ − a−) and (c+ − c−) are to be determined by analysing the
nonlinear dynamics within the critical layer and the surrounding diffusion layer. They
are now considered in turn.

4.1. Critical-layer dynamics

The critical layer is still in equilibrium and viscosity dominated as in stage I. The
transverse variable in this layer is

η = (y − yc)/σ3 , (4.9)

where yc = σYc. The expansions for the disturbance components are

u = ε̂σ−2

{
Ū1 + σ1/4Ū2 + . . .

}
Â ei Θ̂/σ3/4+iX cosZ + c.c.

+ε̂2σ−7

{
σ−1/2τMη

3 + σ−1/4µMη
2 +U

(1)
M + σ1/4U

(2)
M + . . .

}
cos 2Z + . . . , (4.10)

v =

{
ε̂σ2(1+σa)V̄1 + ε̂σ4V̄2 + ε̂3σ−17/2V̄3 + ε̂3σ−33/4V̄4 + . . .

}
Â ei Θ̂/σ3/4+iX cosZ + c.c.

+ε̂2σ−3

{
σ−1/2(6τM/λ)η + σ−1/4(2µM/λ) + V

(1)
M + σ1/4V

(2)
M + . . .

}
cos 2Z + . . . ,

(4.11)

w = ε̂σ−2

{
W̄1 + σ1/4W̄2 + . . .

}
Â ei Θ̂/σ3/4+iX sinZ + c.c.

+ε̂2σ−7

{
σ−1/2(−3τM/λβ) +W

(1)
M + σ1/4W

(2)
M + . . .

}
sin 2Z + . . . , (4.12)

p = ε̂σγ cos θÂ ei Θ̂/σ3/4+iX cosZ + c.c.+ ε̂2σ−2P
(1)
M cos 2Z + . . . , (4.13)

where a is an O(1) constant (see Goldstein & Lee 1992; Mankbadi et al. 1993), whose
exact value is of no importance in our study. Here harmonics are not included since
they do not contribute nonlinear effects to the order considered in the present stage.

An important point is that in order to match to the solution in the diffusion
layer, we have to include mean-flow distortions of O(ε̂2σ−15/2) and O(ε̂2σ−29/4) in
(4.10), i.e. the terms involving τM and µM . Their exact forms are determined by
the asymptotic behaviours of the solutions in the diffusion layer, namely (4.63) and
(4.64). Note that both terms are larger than the mean-flow distortions that are directly
driven by the Reynolds stresses. As we shall show below, it is these two terms that
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eventually contribute the nonlinear effect on the modulus; the corresponding vertical
and spanwise components do not play any active role.

The solutions for V̄1 and V̄2 are given by

V̄1 = − i γc0 , V̄2 = − i γλ η ,

which are trivial continuations of the regular terms in the Tollmien-layer expansion
(not presented here). The leading-order streamwise and spanwise velocities, Ū1 and
W̄1, satisfy

[i α0λη − ∂2/∂η2]Ū1 + λ(− i γc0) = − i α0γ cos θ , (4.14)

[i α0λη − ∂2/∂η2]W̄1 = βγ cos θ . (4.15)

These equations can be solved to obtain

Ū1 = i c0 tan θ sin θΠ (0) , W̄1 = c0 sin θΠ (0) , (4.16)

where we have defined

Π (n) =

∫ +∞

0

ξn e− i ηξ−ŝξ3

dξ , ŝ = 1
3
(λα0)

−1 . (4.17)

The second fundamental components in (4.10) and (4.12), Ū2 and W̄2, are governed
by the following equations:

[i α0λη − ∂2/∂η2]Ū2 = c0 tan θ sin θΘ̂ ′(x̂)Π (0) , (4.18)

[i α0λη − ∂2/∂η2]W̄2 = − i c0 sin θΘ̂ ′(x̂)Π (0) . (4.19)

The fact that the right-hand sides of (4.18) and (4.19) are proportional to Θ̂ ′ indicates
that Ū2 and W̄2 are induced by the modulation of the phase Θ̂(x̂). We solve the
above equations using Fourier transforms, and obtain

Ū2 = (α0λ)
−1c0 tan θ sin θΘ̂ ′(x̂)Π (1) , W̄2 = − i(α0λ)

−1c0 sin θΘ̂ ′(x̂)Π (1) . (4.20)

The continuity equation, i α0Ū2 +βW̄2 = 0, is satisfied automatically. It can be shown
that as η → ±∞

Ū1 → (c0 tanθ sinθ)η−1 , W̄1 → (− i c0 sinθ)η−1 ; (4.21)

Ū2 → −(α0λ)
−1c0 tanθ sinθΘ̂ ′ η−2 , W̄2 → i(α0λ)

−1c0 sinθΘ̂ ′ η−2 . (4.22)

They match to the solutions in the diffusion layer which in turn match with those in
the Tollmien layer.

We now examine quadratic interactions within the critical layer. The mean-flow
distortion, U(1)

M , V (1)
M and W

(1)
M , is directly driven by the interaction between the

leading-order wave components and satisfy

∂V
(1)
M

∂η
+ 2βW (1)

M = 0 , (4.23)

− ∂2U
(1)
M

∂η2
+ λV

(1)
M = − 1

2 i γ
2λ−1c0 sinθ tanθ|Â|2Π (1) + c.c., (4.24)

∂2W
(1)
M

∂η2
= 1

2
γ2λ−1c0 sinθ|Â|2

[
Π (1) + 2 sin2θ|Π (0)|2

]
+ c.c. (4.25)

Equations (4.23)–(4.25) can be integrated directly. For example,

W
(1)
M = γ2λ−1c0 sin θ|Â|2[J (1)

w + 4 sin2 θJ (2)
w ] + Cη + D , (4.26)
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where

J (1)
w =

∫ ∞
0

2 sin2 1
2
ηξ

ξ
e−ŝξ

3

dξ , (4.27)

J (2)
w =

∫ ∞
0

∫ +∞

0

2 sin2 1
2
ηξ

ξ2
e−ŝ[(ξ+ζ)3+ζ3] dξ dζ , (4.28)

and C and D are functions of x̂. It is found that C must be identically zero to ensure
that the O(ε̂2σ−15/2) term in (4.10) is continuous at η = 0. Solutions for U(1)

M and V (1)
M

can be obtained in a similar way. As η → ±∞,

W
(1)
M →±Fwη +Hw log |η| , (4.29)

V
(1)
M →∓βFwη2 − 2βHwη log |η| , (4.30)

U
(1)
M →∓ 1

12
λβFwη

4 − 1
3
λβHwη

3 log |η| , (4.31)

where

Fw(x̂) = 2πγ2λ−1c0 sin3θq0|Â|2, Hw(x̂) = γ2λ−1c0 sinθ cos 2θ|Â|2, (4.32)

q0 =

∫ +∞

0

e−2ŝζ3

dζ = 1
3
(2ŝ)−1/3Γ

(
1
3

)
. (4.33)

The mean-flow distortion, U(2)
M , V (2)

M and W (2)
M , is driven by the interaction between

the leading-order wave components, Ū1, V̄1 and W̄1, and the phase-modulation-
induced wave components Ū2 and W̄2. We find that

∂V
(2)
M

∂η
+ 2βW (2)

M = 0 , (4.34)

− ∂2U
(2)
M

∂η2
+ λV

(2)
M = 1

2
γ3α−1

0 λ−3 tan θ sinθΘ̂ ′|Â|2Π (2) + c.c., (4.35)

∂2W
(2)
M

∂η2
= − 1

2 i γ
3α−1

0 λ−3 sin θΘ̂ ′|Â|2
[
Π (2) + 4 sin2θΠ∗(0)Π (1)

]
+ c.c. (4.36)

The above equation can be solved to give

W
(2)
M = 2γ3λ−2 sin3θΘ̂ ′|Â|2Q(2)

w + . . . , (4.37)

with

Q(2)
w =

∫ +∞

0

∫ +∞

0

sin ηξ − ηξ
ξ

e−ŝ[(ξ+ζ)3+ζ3] dξ dζ ; (4.38)

the dots in (4.37) indicate that we have ignored the terms which vanish at the edge of
the critical layer (and hence do not affect the diffusion layer dynamics). The solutions
for V (2)

M and U
(2)
M can be obtained by straightforward substitution and integration,

and the details are omitted. As η → ±∞,

W
(2)
M → ±Iw , V

(2)
M → ∓2βIwη , U

(2)
M → ∓ 1

3
βλIwη

3 , (4.39)

where

Iw(x̂) = 2πγ3α−1
0 λ−3 sin3θq0Θ̂

′(x̂)|Â|2 .
Because the mean-flow distortions become unbounded at the edge of the critical

layer, a diffusion layer must be introduced to bring in the slow streamwise variation
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effect of the induced mean flow (cf. Wu 1993; Mankbadi et al. 1993). This will be
considered in the next subsection.

The O(ε̂3σ−17/2) term in (4.11), V̄3, satisfies[
i α0λη − ∂2/∂η2

]
V̄3,ηη = α0γ

2λ−1τM

[
3η − 2 i sin2θ(η3Π (0))η

]
, (4.40)

where the right-hand side represents the Reynolds stress produced by the interaction
between the O(ε̂2σ−15/2) mean flow in (4.10) and the leading-order wave components.
After solving equation (4.40), we find that

V̄3,ηη = − i γ
2λ−2(3− 4 sin2θ)τM + . . . , (4.41)

where we have only written out the part of the solution that is relevant for the
derivation of the amplitude equations.

Next, we solve for V̄4 in (4.11), which will contribute a jump across the critical level
Yc. It is found that the governing equation for V̄4 is[

i α0λη − ∂2/∂η2
]
V̄4,ηη = 2α0γµc0Â(x̂)− γ2λ−2(3− 4 sin2θ)τMΘ̂

′ + R1 + R2 , (4.42)

where

R1 = −2α0γλ
−2 tan θ sin θΘ̂ ′τM

(
η2Π (1)

)
η
,

R2 = α0γ
2λ−1µM

[
1− 2 i sin2θ

(
η2Π (0)

)
η

]
.

They are the Reynolds stresses generated by the interaction between the O(ε̂2σ−15/2)
term in (4.10) and the phase-modulation-induced wave components, and the interac-
tion between the O(ε̂2σ−29/4) term in (4.10) and the leading-order wave components,
respectively. The first term on the right-hand side of (4.42) reflects the effect of the
curvature of the unperturbed basic flow at the critical layer. Solving (4.42) by Fourier
transforms, we obtain

c+ − c− ≡ Â
[
V4,η(+∞)− V4,η(−∞)

]
= 2γc0λ

−1µπÂ+ qÂ

∫ +∞

0

ξ−1/2
[
Θ̂ ′(x̂)− Θ̂ ′(x̂− ξ)

]
|Â(x̂− ξ)|2 dξ, (4.43)

where

q = −π3/2γc4
0 tan θ sin3θ cos 2θ q0 . (4.44)

4.2. Diffusion-layer dynamics

In the diffusion layer, the ‘unsteadiness’ balances the viscous effect in the equations
governing the mean-flow distortions. This fixes the width of this layer to be O(σ5/2).
The local transverse variable is thus

η̃ = (y − yc)/σ5/2 . (4.45)

Equations (4.9)–(4.12), (4.21), (4.22), (4.29)–(4.31) and (4.39) suggest that the expansion
in this layer should be

u = ε̂σ−3/2

{
(c0 tan θ sin θ)

[
η̃−1 + σ3/4(−α0λ)

−1Θ̂ ′η̃−2
]

+ . . .

}
Â ei Θ̂/σ3/4+iX cosZ + c.c.

+ε̂2σ−9

{
Ũ

(1)
M + σ1/2Ũ

(2)
M + σ3/4Ũ

(3)
M + . . .

}
cos 2Z + . . . , (4.46)
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v =

{
ε̂σ2(1+σa)(− i γc0) + ε̂σ7/2(− i γλ) η̃ + ε̂3σ−19/2Ṽ3 + . . .

}
Â ei Θ̂/σ3/4+iX cosZ + c.c.

+ε̂2σ−4

{
Ṽ

(1)
M + σ1/2Ṽ

(2)
M + σ3/4Ṽ

(3)
M

}
cos 2Z + . . . , (4.47)

w = ε̂σ−3/2

{
(− i c0 sin θ)

[
η̃−1 + σ3/4(−α0λ)

−1Θ̂ ′η̃−2
]

+ . . .

}
Â ei Θ̂/σ3/4+iX sinZ + c.c.

+ε̂2σ−15/2

{
W̃

(1)
M + σ1/2W̃

(2)
M + σ3/4W̃

(3)
M + . . .

}
cos 2Z + . . . . (4.48)

The governing equations for the leading-order mean-flow distortions are

∂Ṽ
(1)
M

∂η̃
+ 2βW̃ (1)

M = 0 , (4.49)

(
∂

∂x̂
− ∂2

∂η̃2

)
Ũ

(1)
M + λṼ

(1)
M = 0 , (4.50)(

∂

∂x̂
− ∂2

∂η̃2

)
W̃

(1)
M = 0 . (4.51)

It follows from matching with the critical-layer solutions that the boundary conditions
at η̃ = ±0 are

∂4Ũ
(1)
M

∂η̃4
= ∓2βλFw ,

∂2Ṽ
(1)
M

∂η̃2
= ∓2βFw ,

∂W̃
(1)
M

∂η̃
= ±Fw . (4.52)

Equations (4.49)–(4.51), subject to (4.52), are solved to give

Ṽ
(1)
Mη̃η̃=−2β(4π)−1/2η̃

∫ +∞

0

ζ−3/2Fw(x̂− ζ) exp (−η̃2/4ζ) dζ , (4.53)

Ũ
(1)
Mη̃η̃=2βλ(4π)−1/2η̃

∫ +∞

0

ζ−1/2Fw(x̂− ζ) exp (−η̃2/4ζ) dζ . (4.54)

The mean-flow-distortion components at the next order, Ũ(2)
M , Ṽ (2)

M and W̃
(2)
M , are

governed by

∂Ṽ
(2)
M

∂η̃
+ 2βW̃ (2)

M = 0 , (4.55)(
∂

∂x̂
− ∂2

∂η̃2

)
Ũ

(2)
M + λṼ

(2)
M = 0 , (4.56)(

∂

∂x̂
− ∂2

∂η̃2

)
W̃

(2)
M = Hw(x̂)η̃−2. (4.57)

Matching with the logarithmic terms in (4.31) gives the following ‘boundary condi-
tions’

Ũ
(2)
M → − 1

3
βλHw(x̂)η̃3 log |η̃| , Ṽ

(2)
M → −2βHw(x̂)η̃ log |η̃| , W̃

(2)
M → Hw(x̂) log |η̃| .

In the subsequent calculations, only Ũ(2)
M will be needed, and it is found to be

Ũ
(2)
Mη̃η̃ = 2λβ

∫ +∞

0

∫ +∞

0

ξHw(x̂− ξ) e−k
2ξ k2 sin(kη̃) dξ dk . (4.58)
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The mean-flow distortion components, Ũ(3)
M , Ṽ (3)

M and W̃
(3)
M , satisfy the same equa-

tions as (4.49)–(4.51), but with different boundary conditions

∂3Ũ
(3)
M

∂η̃3
= ∓2βλIw(x̂) ,

∂Ṽ
(3)
M

∂η̃
= ∓2βIw(x̂) , W̃

(3)
M = ±Iw(x̂) . (4.59)

We find that

W̃
(3)
M = (2π)−1/2η̃

∫ +∞

0

ξ−3/2Iw(x̂− ξ) e−η̃
2/4ξ dξ , (4.60)

Ṽ
(3)
M = (4β/π)

∫ +∞

0

∫ +∞

0

Iw(x̂− ξ) e−k
2ξ cos(kη̃) dξ dk , (4.61)

Ũ
(3)
Mη̃η̃ = (4βλ/π)

∫ +∞

0

∫ +∞

0

ξIw(x̂− ξ) e−k
2ξ k2 cos(kη̃) dξ dk . (4.62)

While the mean-flow distortion components in the diffusion layer are driven by
the nonlinear interaction within the critical layer, they also have a back effect on the
dynamics in the latter region. This is shown by observing that as η̃ → 0,

Ũ
(1)
M → τM(x̂)η̃3 , (4.63)

Ũ
(3)
M → µM(x̂)η̃2 , (4.64)

where

τM = 1
6
π−1/2βλ

∫ +∞

0

ξ−1/2Fw(x̂− ξ) dξ , (4.65)

µM = 1
2
π−1/2βλ

∫ +∞

0

ξ−1/2Iw(x̂− ξ) dξ . (4.66)

Therefore, the mean-flow expansions in the critical layer must contain the terms
proportional to τM and µM; see (4.10)–(4.12). The quantities τM and µM can be
interpreted, respectively, as the torsion and curvature of the induced mean flow at the
critical level.

Finally, we consider the interaction at the cubic level in the diffusion layer. As
in stage I, the mean-flow distortion components, Ũ(1)

M and Ũ
(2)
M , interact with the

leading-order wave to produce a velocity jump. It can be obtained by solving for Ṽ3,
which satisfies

(i α0)λη̃Ṽ3,η̃η̃ = 1
2 i α0(− i γc0)(Ũ

(1)
M + σ1/2Ũ

(2)
M )η̃η̃

− 2α2
0

[
(c0 tan θ sin θη̃−1)(Ũ(1)

M + σ1/2Ũ
(2)
M )
]
η̃
. (4.67)

After substituting (4.54) and (4.58) into (4.67), we find that

a+ − a−≡Ṽ3,η̃(+∞)− Ṽ3,η̃(−∞)

=(− i γβc0 cos2θ)

{∫ +∞

0

Fw(x̂−ζ) dζ + σ1/2(π3/2/4)

∫ +∞

0

ζ−1/2Hw(x̂−ζ) dζ

}
, (4.68)

where Fw and Hw are defined by (4.32). This jump contributes the nonlinear term in
the modulation equation of the phase Θ̂(x̂), as we shall show below.
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4.3. Evolution equations

Substituting (4.68) and (4.43) into (4.7) and (4.8) respectively, and using (4.32) and
(4.44), we obtain the evolution equations for the phase Θ̂(x̂) and the modulus Â:

Θ̂ ′ = Υ̂θ

∫ +∞

0

|Â(x̂− ξ)|2 dξ + σ1/2Υ̂c

∫ +∞

0

ξ−1/2|Â(x̂− ξ)|2 dξ , (4.69)

Â′ = κÂ+ Υ̂aÂ

∫ +∞

0

ξ−1/2
[
Θ̂ ′(x̂)− Θ̂ ′(x̂− ξ)

]
|Â(x̂− ξ)|2 dξ , (4.70)

where Υ̂θ = Υ as defined by (3.4), while

Υ̂c = − 1
4
π3/2γ2c5

0 sin2θ cos2 2θ(cos θ + sec θ)−1 ,

Υ̂a = −π3/2c6
0 tan θ sin3θ cos 2θq0(cos θ + sec θ)−1 ,

with q0 being defined by (4.33). The nonlinear terms in the equations for the phase
and the modulus come from the diffusion layer and critical layer, respectively. The
coupling between the two equations indicates the interplay between the phase and
modulus. An interesting feature of equation (4.70) is that if Θ̂(x̂) were a linear
function of x̂ (as in the linear stage), i.e. if the wavenumber were a constant, then the
nonlinear term would vanish. In this sense, the nonlinear effect can be interpreted as
arising from wavelength ‘shortening’ or dilation.

With the O(σ1/2) term included, equations (4.69) and (4.70) are ‘composite’, and Â
and Θ̂ should have the expansion (4.6). As mentioned above, the evolution in the
present stage is characterized by Â0 and Θ̂0, which are governed by

Θ̂ ′0 = Υ̂θ

∫ +∞

0

|Â0(x̂− ξ)|2 dξ , (4.71)

Â′0 = κÂ0 + Υ̂aÂ0

∫ +∞

0

ξ−1/2
[
Θ̂ ′0(x̂)− Θ̂ ′0(x̂− ξ)

]
|Â0(x̂− ξ)|2 dξ , (4.72)

obtained by substituting (4.6) into (4.69), and (4.70) and collecting the leading-order
terms. Let us now consider the qualitative behaviour of Â0. For θ < π/4, Υ̂θ < 0. By

differentiating equation (4.71), we find that Θ̂ ′′0 < 0, and hence [Θ̂ ′0(x̂)−Θ̂ ′0(x̂−ξ)] < 0.

Since Υ̂a < 0, it then follows from (4.72) that Â′0/Â0 > 0. A similar argument indicates

that Â′0/Â0 is positive for θ > π/4 as well. We thus conclude that the modulus Â0

monotonically increases in stage II for virtually any θ. An exception is θ ≈ π/4, for
which the coefficients of the nonlinear terms vanish, and the nonlinear evolution of
such waves has to be considered separately.

The equations (4.71) and (4.72) can be combined to give a single equation governing
the modulus

Â′0 = κÂ0 +Υ̂ Â0

∫ +∞

0

∫ +∞

0

ξ−1/2

[
|Â0(x̂−ζ)|2−|Â0(x̂−ξ−ζ)|2

]
|Â0(x̂−ξ)|2 dξ dζ , (4.73)

where

Υ̂ ≡ Υ̂θΥ̂a = 1
2
π5/2

(
2
3

)4/3
Γ 2
(

1
3

)
γ4c10

0 α
−1/3
0 λ−1/3 sin8θ cos22θ(cos θ + sec θ)−2 . (4.74)

Equation (4.73) can also be written in the somewhat simpler form

dÂ0

dx̂
= κÂ0 + Υ̂ Â0

∫ x̂

−∞

∫ ξ

−∞

|Â0(ζ)|2|Â0(ξ)|2
(x̂− ζ)1/2

dζ dξ, (4.75)
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which is the form actually used for the numerical computations to be presented below.
The overall nonlinearity is quintic. Matching with the previous stage gives the initial
condition

Â0(x̂)→ |A0| eκx̂ , x̂→ −∞ , (4.76)

which is obviously compatible with (4.73) since the nonlinear term vanishes as
x̂→ −∞. It follows from (4.71) that

Θ̂0(x̂)→ Υ̂θ|A0|2 e2κx̂ /(2κ)2 , (4.77)

which clearly matches to the solution in stage I (cf. (3.5)).
A numerical solution to (4.75) with (4.76) was computed and is presented in

figure 2(a) in terms of appropriately normalized variables. The results show the
monotonic increase in the modulus described above with the solution developing a
singularity at a finite downstream position, say at x̂s. This singularity has the form

Â0(x̂)→ â0

(x̂s − x̂)5/8
as x̂→ x̂s , (4.78)

where â0 is a constant. Substitution of (4.78) into (4.73) gives

5
8

= 4Υ̂ J0â
4
0 , (4.79)

which determines â0; here

J0 =

∫ +∞

0

ξ−1/2[(1 + ξ)1/4 − 1](1 + ξ)−3/2 dξ . (4.80)

The local asymptotic form near the singularity is shown as the dot–dashed curve in
figure 2(a) and it is seen that the singularity develops very quickly once the solution
departs from the upstream, wavelength-shortening stage, solution. In figure 2(b) the
result for the corresponding phase function, obtained from (4.71), is shown. It also
develops a singularity whose form can be deduced by substituting (4.78) into (4.71),
to show that as x̂→ x̂s,

Θ̂0 → φ0 + θ̂0(x̂s − x̂)3/4 , (4.81)

where φ0 is a constant, and

θ̂0 = −16Γθâ
2
0/3. (4.82)

Upon inserting (4.6) into (4.69) and (4.70), and collecting all O(σ1/2) terms, the
evolution equations for Θ̂1 and Â1 are obtained. As x̂→ x̂s, their solutions develop a
singularity of the form

Â1(x̂)→ â1(x̂s − x̂)−9/8 , Θ̂1(x̂)→ θ̂1(x̂s − x̂)1/4 , (4.83)

with â1 and θ̂1 being constants. Their values are determined by

− 1
4
θ̂1 = 8

3
Υ̂θâ0â1 + Υ̂cI0â

2
0 , (4.84)

9
8
â1 = − 1

4
Υ̂aΛ0â

3
0θ̂1 − 3

4
Υ̂aK0θ̂0â

2
0â1 , (4.85)

where

I0 =

∫ +∞

0

ζ−1/2(1 + ζ)−5/4 dζ , (4.86)

Λ0 =

∫ +∞

0

ζ−1/2
[
1− (1 + ζ)−3/4

]
(1 + ζ)−5/4 dζ , (4.87)
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Figure 2. (a) The normalized modulus, and (b) the normalized lowest-order phase function, of the
WKBJ solution (soild curve), upstream wavelength-shortening stage solution (dashed), and local
asymptotic form near the singularity (dot-dashed) vs. normalized streamwise distance.

K0 =

∫ +∞

0

ζ−1/2
[
1− (1 + ζ)−1/4

]
(3 + ζ)(1 + ζ)−7/4 dζ . (4.88)

It follows from (4.4), (4.6), (4.78), (4.81) and (4.83) that as x̂→ x̂s,

A(x̂)→
{
â0(x̂s − x̂)−5/8 + σ1/2â1(x̂s − x̂)−9/8

}
× exp

{
i[θ̂0(x̂s − x̂)3/4 + σ1/2θ̂1(x̂s − x̂)1/4]/σ3/4 + iφ0/σ

3/4
}
. (4.89)

5. Nonlinear stage III: non-equilibrium critical layer regime
5.1. Scaling change and amplitude equation

The singularity structure (4.89) indicates that as x̂→ x̂s,

Â′/Â→ 5
8
(x̂s − x̂)−1 .

This implies that as a result of the finite-distance singularity, the disturbance will
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evolve over a faster spatial scale near x̂s. A new regime is reached when

x̂s − x̂ = O(σ) .

In this neighbourhood of x̂s, the critical layer becomes non-equilibrium and viscous
in nature, in contrast to stages I and II, where the critical layer is in equilibrium and
is purely viscosity dominated. Also, since Θ̂ ′ = O(σ−1/4), the first two terms of the
wave components in (4.10) and (4.12) are of the same order in magnitude, implying
that the phase-modulation-induced velocity becomes as large as the leading-order
velocity. The appropriate spatial scale describing the evolution in this stage is

x̃ = (x̂− x̂s)/σ , (5.1)

and the magnitude of the disturbance becomes

ε̃ = ε̂σ−5/8 = σ7 . (5.2)

The solution in the main part of the boundary layer again takes the form (2.7)–(2.10)
provided that ε is replaced by ε̃, and A(x1) by

A = Ã(x̃) eiφ0/σ
3/4

, (5.3)

where Ã(x̃) is the appropriate complex amplitude function in stage III. The flow
outside the critical layer is still linear and inviscid to the order of our interest
here, and the solution can be sought by a straightforward expansion. Matching the
solutions in different regions gives (see Wu 1995)

i c
−1
0 (cos θ + sec θ)

dÃ

dx̃
= γ2c0(a

+ − a−) , (5.4)

where the jump (a+− a−) is to be determined by nonlinear interactions in the critical
layer.

To illustrate the major feature of this stage, and also to facilitate the matching with
the next stage, we write the first few terms in the expansion within the critical layer:

u= ε̃σ−2
{

(1+σa)Ũ1 + σ2Ũ2 + . . .
}

eiφ0/σ
3/4+iX cosZ + c.c.+ . . . , (5.5)

v= ε̃σ2
{

(1+σa)(− i γc0)Ã+ σ2(− i γλÃ) η + . . .
}

eiφ0/σ
3/4+iXcosZ + c.c.+ . . . ,

(5.6)

w= ε̃σ−2
{
W̃1 + . . .

}
eiφ0/σ

3/4+iX sinZ + c.c.+ . . . , (5.7)

p = ε̃σγ cosθÃ eiφ0/σ
3/4+iX cosZ + c.c.+ . . . , (5.8)

where Ũ2 = λ secθÃ, which is the trivial continuation of the solution in the Tollmien
layer. The leading-order streamwise and spanwise velocities, Ũ1 and W̃1, are governed
by equations

[∂/∂x̃+ i α0λη − ∂2/∂η2]Ũ1 + λ(− i γc0) = − i α0γ cos θ ,

[∂/∂x̃+ i α0λη − ∂2/∂η2]W̃1 = βγ cos θ .

Note that the non-equilibrium effect, represented by ∂/∂x̃, now appears at leading
order. The above equations have the solutions (cf. Wu et al. 1993)

Ũ1 = i γ
2 sin2θΠ̃ , W̃1 = γ2 sinθ cosθΠ̃ , (5.9)
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with

Π̃ =

∫ +∞

0

Ã(x̃− ξ) e− i α0ληξ−sξ3

dξ , s = 1
3
α2

0λ
2 . (5.10)

The nonlinear interactions within the critical layer are the same as in Wu et al.
(1993) so that the jump across the critical layer, (a+ − a−), can be borrowed from
there without performing a detailed analysis. After substituting this jump into (5.4),
we obtain the amplitude equation

dÃ

dx̃
= i Υ̃

∫ +∞

0

∫ +∞

0

K(ξ, η)Ã(x̃− ξ)Ã(x̃− ξ − η)Ã∗(x̃− 2ξ − η) dξ dη , (5.11)

where

Υ̃ = −πγ2α3
0λ

3c5
0 sin2θ(cos θ + sec θ)−1 . (5.12)

The kernel K(ξ, η) is given by (3.85) of Wu et al. (1993), with the parameter s given
by (5.10). (This kernel is reproduced in Appendix A for completeness.) Similar
deductions for nonlinear terms, and associated coefficients, have been made in Wu et
al. (1996) and Wu (1995), where the critical layers change their character as a result
of a focusing singularity and super-exponential growth (induced by subharmonic
resonance, see Goldstein 1994), respectively. The term representing the linear growth
rate does not enter the amplitude equation (5.11) since the disturbance now evolves
over a much shorter streamwise scale.

We note that in the present stage III, the harmonic proportional to e2 iX as well
as the spanwise-independent mean flow also make a contribution to the leading-
order nonlinear term (see Goldstein & Choi 1989; Wu et al. 1993), unlike the two
previous stages where the nonlinear effects are solely associated with the induced
spanwise-dependent mean flow.

The appropriate initial condition for (5.11) is determined by the requirement that
the solution in the present stage match to that in stage II. After rewriting (4.89) in
terms of x̃, we have

Ã(x̃)→
{
â0(−x̃)−5/8 + â1(−x̃)−9/8

}
exp i

{
θ̂0(−x̃)3/4 + θ̂1(−x̃)1/4

}
(5.13)

as x̃ → −∞. In Appendix B, we show that the above condition is compatible with
the amplitude equation (5.11) in the sense that both sides of (5.11) have the same
asymptotic behaviour when x̃→ −∞. Hence the solutions in stages II and III indeed
match in the asymptotic sense.

A comparison of (5.9) with (4.16) reveals a crucial difference between stages II
and III: in stage III, the normal distribution of the leading-order streamwise (and
spanwise) velocity(s) undergoes deformation as the amplitude evolves, while in stage
II, the normal distribution is solely determined by linear dynamics and does not
change its ‘shape’ during the evolution. Such a deformation of the shape is a direct
result of the interplay between nonlinear and non-equilibrium effects. This is one of
the important ways that the non-equilibrium critical-layer approach, though weakly
nonlinear, differs both from the classical weakly nonlinear theory (cf. Stuart 1960),
and from the weakly nonlinear asymptotic theory based on the lower-branch scaling
(cf. Hall & Smith 1989; Smith & Blennerhassett 1992).

5.2. Study of the amplitude equation

Since the amplitude equation (5.11) does not have a linear term and is subject to
an upstream condition different from that in Wu et al. (1993), the behaviour of its
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Figure 3. Ln|Ã| vs. s1/3x̃ for γ = 0.1: (a) θ = π/8, (b) θ = 3π/8. The dashed lines represent the
upstream behaviour (5.13), and the dotted lines the local singular solution (5.14).

solution is not immediately clear. In order to resolve this ambiguity, equation (5.11)
is solved numerically using an Adam–Moulton finite-difference scheme. In order to
march the solution downstream, we begin in the region x̃ 6 −T0, T0 � 1, where Ã can
be approximated by its asymptote, i.e. by the right-hand side of (5.13). The algebraic
decay of Ã as x̃ → −∞ in this problem results in a much slower convergence of the
double integral in (5.13) (cf. Wu et al. 1993 ). Consequently, attempts to approximate
the integral over D = [0,∞)× [0,∞) by integrating over a sufficiently large but finite
domain, say D0 = [0, X0]× [0, Y0], so that the tail over (D−D0) can be simply ignored,
requires extremely large values of (in particular) Y0. We were unable to obtain reliable
results in an acceptable amount of time with this approach. To resolve this difficulty,
the tail over [0,∞) × [Y0,∞) was approximated by its asymptote, while the tail over
[X0,∞) × [0, Y0], which was found to be considerably smaller, was neglected. This
allows the required size of Y0 to be reduced considerably. In fact, we find that it is
sufficient to take X0 = Y0 = x̃ + T0 with T0 typically of order 20; halving this size
has no appreciable effect on the solution. The smooth matching with the upstream
asymptotic behaviour also indicates the reliability of our numerical solution.

Numerical solutions suggest that the amplitude Ã(x̃) terminates at a singularity at
a finite distance, say x̃s. The singularity takes the form

Ã(x̃)→ ã0

(x̃s − x̃)3+iψ
as x̃→ x̃s , (5.14)

where ã0 and ψ are complex and real numbers respectively. The structure is the same
as that proposed by Goldstein & Choi (1989) and Wu et al. (1993) for a related
amplitude equation. This is not surprising since in the vicinity of the singularity the
dominant balance is the same in all the cases.

The amplitude equation (5.11) and the ‘initial’ condition (5.13) involve only two
parameters, γ and θ, which must lie in the unstable region in figure 1. In our
calculations, we choose γ = 0.1, but the results are representative for other values of
γ. In figure 3, we show the streamwise development of the modulus of the amplitude
Ã(x̃) for two obliqueness angles: θ = π/8 and θ = 3π/8. As the figure indicates,
starting from the upstream condition (5.13), the disturbance gradually evolves into
the new stage as the non-equilibrium effect becomes increasingly significant. For
θ = π/8, the non-equilibrium effect enhances the amplification, and eventually leads
to the formation of a singularity of the form (5.14) at x̃s. It is found that x̃s < 0,
which indicates that the present singularity is formed prior to the one in the previous
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Figure 4. Re Ã vs. s1/3x̃ for θ = π/8 (a) and θ = 3π/8 (b). The dotted lines represent the upstream
behaviour (5.13). Note that the non-equilibrium effect eliminates the singularity of stage II in case
(b) but not in case (a).

stage. For θ = 3π/8, the immediate effect of the non-equilibrium critical layer is
stabilizing in the sense that it initially inhibits the growth of the disturbance. As a
result, the singularity (4.83) in the previous stage is eliminated. However, the ultimate
action of the non-equilibrium effect again is to accelerate the amplification, causing
a singularity of more severe nature than (4.83). To show the interplay between the
wavelength alteration and the nonlinear effect, we plot the development of the real
part of the amplitude function in figure 4(a,b). Clearly, as the disturbance evolves
downstream, the wavelength is continually adjusted by nonlinear effects. The change
of wavelength in turn affects the modulus. As the singularity is approached, the
wavelength will be altered by an O(1) amount.

As indicated above, the non-equilibrium critical layer effects deform the normal
distribution of the leading-order streamwise and spanwise velocities. This is shown
in figure 5. For θ = π/8, the deformation starts with a shifting of the position of
the maximum velocity away from the wall, while for θ = 3π/8, the position of the
maximum descends towards the wall. In both cases, the velocity distribution evolves
into a much flatter pattern in the later stage, indicating that the disturbance is no
longer concentrated in a thin layer. Such a thickening of the critical layer and the
singularity structure (5.14) suggest the introduction of the similarity variable

η̂ = (x̃s − x̃)η (5.15)

to describe the deformation of Ũ1 and W̃1. Inserting (5.15) and (5.14) into (5.10), and
then taking the limit (x̃− x̃s)→ 0, we find

Π̃ → (x̃s − x̃)−(2+iψ)

∫ +∞

0

(1 + ξ)−(3+iψ) e− i α0λη̂ξ dξ . (5.16)

In figure 6, we plot the distributions of |Ũ1| at different streamwise stations against
η̂. The shape of Ũ1 appears to approach the final similarity form (5.16) as x̃ → x̃s,
confirming the asymptotic result.

Our theoretical prediction of disturbance deformation is in broad agreement with
the numerical finding of Chang & Malik (1994) for pairs of oblique first modes in a
low-Mach-number supersonic boundary layer. This agreement is not too surprising
because the same mechanism, namely the interplay between non-equilibrium and
nonlinearity, is operative in both flows. In the Chang & Malik simulations, the initial
disturbances are T-S waves, but they change their character and become Rayleigh
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Figure 5. The shape of the modulus of streamwise velocity, |Ũ1|, at different downstream locations.

(a) θ = π/8: (i) s1/3x̃ = −15, (ii) −5, (iii) −1.55. (b) θ = 3π/8: (i) s1/3x̃ = −15, (ii) 2, (iii) 6.45.
The dotted line represents the distribution in the linear regime. The deformation of the shape
is characterized by initial drifting and subsequent expanding of the region where the disturbance
concentrates.
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Figure 6. Distribution of |Ũ1| in terms of the similarity variable η̂. (a) θ = π/8: (i) s1/3x̃ = −2.55,

(ii) −1.55, (iii) −1.05. (b) θ = 3π/8: (i) s1/3x̃ = 5.75, (ii) 6.75, (iii) 7.25. The dotted lines correspond
to the asymptotic form (5.16).

waves as they approach the upper branch, which is on Rayleigh scaling. The
non-equilibrium critical-layer regime can therefore be reached, with the streamwise
velocity being exactly the same as (5.9). The amplitude equation (5.11) still applies
since compressible effects do not contribute to the dominant nonlinear effect (see Leib
& Lee 1995). We believe this similarity is the basis for the agreement.

In a supersonic boundary layer, transition is observed to take place near the critical
layer well before the transition reaches the wall. The region of transitional flow
expands transversely to form a ‘turbulent wedge’, which finally spreads to the whole
boundary layer (Fischer & Weinstein 1972). This phenomenon may be explained by
our theoretical results which show that the disturbance has its largest magnitude in
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Figure 7. Merging of the critical layer with the Tollmien layer.

the critical layer and that the critical layer thickens downstream (see also Pruett &
Zang 1992; Pruett & Chang 1995).

6. Nonlinear stage IV: unsteady inviscid triple-deck stage
As x̃ → x̃s, the critical layer thickens with its width increasing like (x̃s − x̃)−1 (see

(5.15)), and eventually merges with the Tollmien layer when

x̃s − x̃ = O(σ2) . (6.1)

This is shown schematically in figure 7, which also illustrates the flow structures in
previous stages. On the other hand, (5.9), (5.10) and (5.16) show that Ũ1 behaves
like (x̃s − x̃)−(2+iψ), while Ũ2, which is proportional to Ã, grows like (x̃s − x̃)−(3+iψ).
Therefore the first two terms in (5.6) become of the same order when (6.1) holds.
These suggest that the disturbance enters a new stage in the neighbourhood of x̃s
specified by (6.1). The unscaled growth rate, σ3(Ã′/Ã), now increases to O(σ), which
is of the same order as the wavenumber. The appropriate streamwise variable should
be

x̄ = c (x̃− x̃s)/σ2 . (6.2)

All the harmonics have the same order of magnitude as that of the fundamental and
the disturbance is no longer sinusoidal in t or Z . The solution will therefore have a
more general (but still periodic) dependence on the time and spanwise variables

t̄ = σ2t , z̄ = σz .

Since the critical layer is no longer distinct, the flow now consists of four layers:
the potential layer, the main layer, the Tollmien layer and a viscous wall sublayer
(see below). As pointed out by Goldstein (1994), the development of the disturbance
is governed by the nonlinear three-dimensional unsteady triple-deck equations. These
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equations were derived earlier by Zhuk & Ryzhov (1989) in a more general setting,
and the present problem can regarded as a special case of theirs with ∆ = Re−1/20.

The transverse variable describing the Tollmien layer is

Y = y/σ .

Equations (5.6)–(5.8) together with (5.9), (5.10), (5.16) and (6.2) suggest that the
solution in this layer should be expanded as (cf. Zhuk & Ryzhov 1989)

(u, v, w, p) = (σU, σ3V , σW, σ2P ) + . . . . (6.3)

After substituting the above expansion into the Navier–Stokes equations and retaining
leading-order terms, it is found that U, V , W and P satisfy

∂U

∂x̄
+
∂V

∂Y
+
∂W

∂z̄
= 0 , (6.4)

∂U

∂t̄
+U

∂U

∂x̄
+ V

∂U

∂Y
+W

∂U

∂z̄
= −∂P

∂x̄
,

∂W

∂t̄
+U

∂W

∂x̄
+ V

∂W

∂Y
+W

∂W

∂z̄
= −∂P

∂z̄
.

 (6.5)

As in standard triple-deck theory (e.g. Smith & Stewart 1987), the pressure P depends
only on x̄, t̄ and z̄ (but not on Y ), and is related to the displacement D(x̄, t̄, z̄) via

P = − 1

2π

∫ ∞
−∞

∫ ∞
−∞

∂2D/∂ξ2

[(x̄− ξ)2 + (z̄ − η)2]1/2
dξ dη , (6.6)

which can be derived by matching the solutions in the potential and the main layers,
where the flow is still linear. The boundary condition as Y → +∞ is given by
matching U and W with their counterparts in the main layer, and this leads to (for
details see Zhuk & Ryzhov 1989)

U → λY + D(x̄, t̄, z̄) +

{∫ +∞

0

ξPz̄z̄(x̄− ξ, t̄, z̄) dξ

}
Y −1 ,

W →
{∫ +∞

0

Pz̄(x̄− ξ, t̄, z̄) dξ

}
Y −1 .

 (6.7)

The normal velocity vanishes on the wall; so V = 0 when Y = 0. While Zhuk
& Ryzhov (1989) derived the system (6.4)–(6.7), they did not give the appropriate
‘initial condition’ (in terms of x̄) that must be imposed in order to ensure that the
system actually describes the later stage of a gradual transition initiated by linear T-S
waves in the upstream flow. For the present problem, stage IV follows the merging
of the critical layer with the Tollmien layer (see figure 7). The solution should
therefore match with the asymptotic behaviour of the critical-layer solution in stage
III. After using (5.6)–(5.8), (5.9), (5.10), (5.14)–(5.16) and (6.2), this matching leads to
the following ‘initial condition’: U−λYV

W
P

→

(
− i λγ sin2θ x̄G(x̄, Y )+λ secθ

)
cosβz̄

(− i γλ)Y cosβz̄
−λγ sinθ cosθ x̄G(x̄, Y ) sin βz̄

γ cosθ cosβz̄

 ã0(−x̄/c0)
−(3+iψ) eiφ+i α(x̄−c̄t) ,

+ c.c. as x̄→ −∞ , (6.8)
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where

G(x̄, Y ) =

∫ +∞

0

(1 + ξ)−(3+iψ) ei α0λx̄(Y−Yc)ξ dξ , (6.9)

which is obtained by rewriting (5.16) in terms of x̄ and Y , while

φ = c0(x̂s + κ−1 log σ−3/8 + σx̃s)/σ
3 + φ0/σ

3/4 .

The solution to (6.4)–(6.6) ultimately matches to the initial linear stage, through the
intermediate weakly nonlinear stages (i.e. stages I, II and III).

The relevant solution to the triple-deck equations (6.4)–(6.6) satisfies the periodicity
condition

[U (̄t+ T ), V (̄t+ T ), W (̄t+ T ), P (̄t+ T )] = [U (̄t), V (̄t), W (̄t), P (̄t)] , (6.10)

where the period T = 2π/ω since the initial condition is time harmonic. The nonlinear
three-dimensional (inviscid) triple-deck system (6.4)–(6.6), subject to (6.7)–(6.10), has
not yet been attacked numerically, although some speculations have been made about
the possible behaviour of its solution (see §7).

In order to satisfy the no-slip condition on the wall, a wall sublayer with a width of
O(σ4) has to be introduced. The transverse variable is Ỹ = y/σ4 and the expansion
takes the form

(u, v, w) = (σŨ, σ6Ṽ , σW̃ ) + . . . . (6.11)

The flow in this layer is driven by the pressure P , which can be prescribed after
solving (6.4)–(6.6). It can be shown that Ũ, Ṽ and W̃ are governed by the classical
(non-interactive) unsteady three-dimensional boundary layer equations. Note that,
unlike previous stages, the wall sublayer is now fully nonlinear (and for this reason
we do not refer to it as a Stokes layer in this section). It is known that the solution
to the unsteady classical boundary layer equations usually develops a singularity in
the form of a thickening of the displacement (see e.g. Cowley, Van Dommelen &
Lam 1991 and references therein). As pointed out by Smith & Burggraf (1985) (see
also discussion in Kachanov, Ryzhov & Smith 1993), this may be related, in the
present context, to the vorticity eruption from the wall, which was observed to occur
in conjunction with spikes (Klebanoff et al. 1962).

7. Conclusion and discussion
In this paper, we have followed the nonlinear evolution of a pair of initially

linear oblique T-S waves, and presented a self-consistent asymptotic description for
the nonlinear stages through which the disturbance evolves. We show that in the
initial stage nonlinearity simply alters the wavelength, without affecting the growth
of the magnitude of the disturbance. However, once the alteration in the wavelength
becomes sufficiently rapid, a back reaction on the disturbance magnitude is produced,
leading to the second stage, where the equations governing the development of the
wavelength and the disturbance magnitude are coupled (i.e. there is an interplay
between the two). The solution develops a singularity at a finite distance downstream
in this stage. On approaching the singularity, the disturbance enters the third stage
in which the waves evolve over a faster streamwise length scale and non-equilibrium
effects become important at leading order in the critical layer. In this stage, there
is a continuing distortion of the normal distribution of the leading-order streamwise
and spanwise disturbance velocities. The amplitude equation has the same nonlinear
term as the one derived by Wu et al. (1993) for the interaction between a pair of
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oblique Rayleigh instability waves. The solution to this amplitude equation is found
to develop another singularity, which can be upstream or downstream of the one
in the previous stage, depending on the obliqueness angle. In the vicinity of this
new singularity, the flow is governed by the fully nonlinear three-dimensional inviscid
triple-deck equations, i.e. long-wavelength Euler equations. The above nonlinear
stages may characterize oblique-mode breakdown. It is worth noting that in the
upper-branch-scaling regime, an initially linear disturbance does not evolve to a
nonlinear stage with order-one changes in the mean flow and with the disturbance
becoming neutral at very small magnitude (cf. Hall & Smith 1991).

Appendix C shows (a) that the evolution equations governing each of the nonlinear
stages described above are all contained within the equation governing the evolution
of a pair of oblique Rayleigh waves in the non-equilibrium viscous nonlinear critical
layer regime, derived by Wu et al. (1993), and (b) that each of the former can be
obtained as a limiting form of the latter. A uniformly valid solution for the oblique
T-S wave evolution, from the linear growth through the non-equilibrium nonlinear
stage will therefore be governed by the equation of Wu et al. (1993). The analysis
shows that non-equilibrium critical layer effects ultimately control the development
of initially linear instability waves even for a Blasius boundary layer, where the initial
critical layer is dominated by viscous effects.

We have excluded any two-dimensional T-S wave in this study, and have considered
the case where the imposed upstream disturbance consists only of a symmetric pair
of oblique instability waves. While this is likely to be appropriate for K-type
transition with pre-existing streamwise vortices, as in the original Klebanoff et al.
(1962) experiment (see Goldstein & Wundrow 1995), it is more likely that the oblique
waves will be amplified to nonlinear levels through a parametric resonance with a
linearly growing plane wave in flows where subharmonic transition occurs, in which
case the development may not follow the path as described above. However, the
last two stages, namely the non-equilibrium critical-layer and the inviscid triple-
deck regimes, appear to be ‘attracting stages’ for many types of initial disturbances,
including the subharmonic resonant triad. For the resonant triad, the path leading
to the non-equilibrium critical-layer regime depends on the magnitude of the oblique
modes. In the case of exponentially small magnitude, a parametric resonance occurs
first in the viscous-dominated critical-layer regime, causing super-exponential growth
of the oblique modes, and the non-equilibrium stage follows immediately (Goldstein
1994; Wundrow, Hultgren & Goldstein 1994). For the case where the magnitude
of oblique modes is algebraically small, the evolution equations governing the initial
nonlinear development were given by Mankbadi et al. (1993) for a Blasius boundary
layer, by Wu (1993) for a pressure gradient boundary layer, and a unified account of
the general case was given by Lee (1994). The numerical solutions in these papers
suggest, and it can be shown analytically, that the oblique wave amplitude eventually
returns to its linear growth while phase oscillations are produced by the nonlinear
self-interaction term (Goldstein 1996). The subsequent stages of the evolution are
then exactly the same as in this paper. In particular, the wavelength shortening
caused by the rapid phase oscillations leads to a WKBJ stage, whose breakdown
leads to the non-equilibrium stage. The derivation of Appendix C suggests that the
non-equilibrium critical layer equations given by Lee (1994) and Wu (1995) provide a
uniformly valid description of the entire process, and the wave development in each
nonlinear stage would be governed by appropriate limiting forms of the amplitude
equations given in Wu (1995).

In a forthcoming paper, we show that a disturbance consisting of both two-
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and three-dimensional T-S waves which are phase-locked but not of subharmonic-
resonance form (cf. Wu & Stewart 1996) also evolves into the non-equilibrium
critical-layer and the inviscid triple-deck stages. For both phase-locked and resonant-
triad interactions, the disturbances in the final stage are governed by (6.4)–(6.6),
subject to appropriate upstream conditions, which can be derived by studying the
non-equilibrium critical layer regime for each case. For the resonant triad, a period-
icity condition like (6.10) can be imposed, with T being the period of the oblique
subharmonic modes. But a periodicity condition can no longer be imposed for the
phase-locked disturbance, because the ratio of the frequencies of the planar and
oblique modes is not a rational number in general. Nevertheless, the governing
equations could be solved by a suitable spectral expansion in time.

It has been suggested (e.g. Kachanov et al. 1993) that the solution to the fully
nonlinear system (6.4)–(6.6) may exhibit spikes. Such an outcome does not seems
implausible since the solution contains the fundamental and all harmonics at leading
order, so that a synchronization of their phases in a certain region of space could give
rise to spikes (Kachanov 1994; Rist & Fasel 1995). The imposed periodicity condition
is not expected to prevent the formation of spikes, since up to the double-spike stage
the disturbance is still periodic in time (Kachanov 1994). However, the question of
whether or not spikes appear is a complicated one because experiments show that it
depends crucially on which type of disturbance is introduced; an argument based on
the governing equations alone is not sufficient.

Recent experimental studies further suggest that spikes may be related to solitons
(Borodulin & Kachanov 1990; Kachanov 1990, 1991). A theoretical effort has been
made by Kachanov et al. (1993) to establish such a link. Their work is mainly
concerned with two-dimensional disturbances, and is built on the fact that the two-
dimensional version of (6.4)–(6.6) can be reduced to the so-called Benjamin–Ono
equation (Zhuk & Ryzhov 1982; Smith & Burggraf 1985), which is known to possess
a soliton type of solution. Unfortunately, for the fully three-dimensional system,
such a simplification does not apply. Clearly, a two-dimensional theory is inadequate
because spike formation is in reality a three-dimensional phenomenon. A firm
theoretical confirmation of the soliton nature of spikes is yet to be achieved. In this
respect, numerical studies of (6.4)–(6.10), with appropriate upstream conditions, may
prove to be important.

The work of X.W. is supported by a Nuffield Foundation award. He would like
to thank Dr S. J. Cowley and P. A. Stewart and Professor J. T. Stuart for helpful
discussion.

Appendix A
The kernel function K(ξ, η) is given by (3.85) of Wu et al. (1993). With a slight

adjustment of notation, it can be written as

K(ξ, η |Λ)=K̃ (0)(ξ, η)(2ξ3 + ξ2η)

+ 2 sin2θ

{
K̃ (0)(ξ, η)

∫ η

0

[ξ2 + 2ξ(η − ζ)] e−2Λζ3−3Λξζ2

dζ

+ K̃ (0)(ξ, η)

∫ ξ

0

[ζ(2η + 3ζ)− ξ(ξ + 2η + 2ζ)] e−3Λξζ2

dζ
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+ 2K̃ (1)(ξ, η)

∫ ξ

0

ηζ[1 + 6Λ(ξ − ζ)(ξ + η + ζ)2]Π0(ξ, η, ζ) dζ

+ K̃ (1)(ξ, η)

∫ ξ

0

[(η + ζ)(η + 3ζ)− (ξ + η)(ξ + η + 2ζ)] e−3Λ(ξ+η)(2η+ζ)ζ dζ

}
+ 8 sin4θ

{
K̃ (0)(ξ, η)

∫ ξ

0

dζ e−3Λξζ2

∫ η+ζ

0

(υ − η − ζ)[1 + 6Λ(ξ − ζ)ζ2] e−Λ(2υ3+3ξυ2) dυ

+ 2K̃ (1)(ξ, η)

∫ ξ

0

dζΠ0(ξ, η, ζ)

∫ ζ

0

(ζ − υ)[1 + 6Λ(ξ − ζ)(ξ + η + ζ)2] eΛ(2υ3+3ηυ2) dυ

+ K̃ (1)(ξ, η)

∫ ξ

0

dζ e−3Λ(ξ+η)(2η+ζ)ζ

∫ ζ

0

(υ − ζ)[1 + 6Λ(ξ − ζ)(η + ζ)2] e−Λ[2υ3+3(ξ+η)υ2] dυ

}
,

(A 1)

where the auxiliary kernels K̃ (0), K̃ (1) and Π0 are defined by

K̃ (0)(ξ, η) = e−Λ(2ξ3+3ξ2η) , K̃ (1)(ξ, η) = e−Λ[ξ3+η3+(ξ+η)3] , (A 2)

Π0(ξ, η, ζ) = e−Λ(4ζ3+6ξζ2+9ηζ2+6ξηζ+6η2ζ) . (A 3)

Appendix B
We first consider the left-hand side of (5.11). It follows from differentiating (5.13)

that

Ã′ →
(
− 3

4 i θ̂0(−x̃)−1/4 − 1
4 i θ̂1(−x̃)−3/4

)
Ã∞(x̃) ei Θ̃∞ .

+
(

5
8
â0(−x̃)−13/8 + 9

8
â1(−x̃)−17/8

)
ei Θ̃∞ , as x̃→ −∞, (B 1)

where we have defined

Ã∞(x̃) = â0(−x̃)−5/8 + â1(−x̃)−9/8, Θ̃∞(x̃) = θ̂0(−x̃)3/4 + θ̂1(−x̃)1/4.

In order to facilitate further calculations, the right-hand side of (5.11) is written as
a sum of six terms as in Wu et al. (1993):

i Υ̃
{
N(0) +N(1) + 2 sin2θ[N(2) +N(3)] + 8 sin4θN(4) +N(5)

}
, (B 2)

where N(j) (j = 0, 1, 2, 3, 4, 5) are defined in Appendix B of Wu et al (1993); see their
(B2)–(B4). After substituting (5.13) into N(0) and N(5), and taking the limit x̃→ −∞,
we find that neither of these terms contributes to the dominant upstream balance.

For N(1), we perform the following substitution:

ξ → (−x̃)−1/2ξ , η → (−x̃)η , (B 3)

and, upon taking the limit,

N(1) → 1
4
π1/2(3s)−3/2I0â

2
0(−x̃)−3/4Ã∞(x̃) ei Θ̃∞ , (B 4)

with I0 given by (4.86). The function N(3) can be split into the three terms defined
by (B16) of Wu et al. (1993), and only the second term, which is similar to N(1),
contributes to the upstream balance with

N(3) → − 1
4
π1/2(3s)−3/2I0â

2
0(−x̃)−3/4Ã∞(x̃) ei Θ̃∞ . (B 5)
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In the limit x̃→ −∞, the leading-order contribution to the right-hand side of (5.11)
comes from N(2) and N(4), which we now consider. For convenience, we first define

G(x̃; ξ, η)=
[
(−x̃+ ξ)(−x̃+ ξ + η)(−x̃+ 2ξ + η)

]−5/8

×
(
â0 + â1(−x̃+ξ)−1/2

)(
â0+â1(−x̃+ξ+η)−1/2

)(
â0+â1(−x̃+2ξ+η)−1/2

)
× exp

{
i θ̂0[(−x̃+ ξ)3/4 + (−x̃+ ξ + η)3/4 − (−x̃+ 2ξ + η)3/4]

+ i θ̂1[(−x̃+ ξ)1/4 + (−x̃+ ξ + η)1/4 − (−x̃+ 2ξ + η)1/4]
}
. (B 6)

It follows from the substitution of (5.13) into N(2) ((B14) in Wu et al. 1993) that

N(2) →
∫ +∞

0

∫ +∞

0

∫ +∞

0

(2ξη) e−2sξ3−3sξ2(η+ζ)−2sζ3−3sξζ2

G(x̃; ξ, η + ζ) dξ dη dζ . (B 7)

Integrating by parts with respect to ξ, we obtain

N(2)=(3s)−1

{
Ã∞ ei Θ̃∞

∫ +∞

0

∫ +∞

0

(−x̃+η+ζ)−5/4
[
â0+â1(−x̃+η+ζ)−1/2

]2

e−2sζ3

dη dζ

+
3

4
i θ̂0

∫ +∞

0

∫ +∞

0

∫ +∞

0

[
(−x̃+ξ)−1/4 + (−x̃+ξ+η+ζ)−1/4 − 2(−x̃+2ξ+η+ζ)−1/4

]
e−2sξ3−3sξ2(η+ζ)−2sζ3−3sξζ2

G(x̃; ξ, η + ζ) dξ dη dζ

+
1

4
i θ̂1

∫ +∞

0

∫ +∞

0

∫ +∞

0

[
(−x̃+ξ)−3/4 + (−x̃+ξ+η+ζ)−3/4 − 2(−x̃+2ξ+η+ζ)−3/4

]
e−2sξ3−3sξ2(η+ζ)−2sζ3−3sξζ2

G(x̃; ξ, η + ζ) dξ dη dζ

+(−3s)

∫ +∞

0

∫ +∞

0

∫ +∞

0

ζ2 e−2sξ3−3sξ2(η+ζ)−2sζ3−3sξζ2

G(x̃; ξ, η + ζ) dξ dη dζ

}
+ . . . , (B 8)

where we have ignored the terms whose asymptotes are much smaller than those in
which we are interested. After making the substitution (B 3) and taking the limit
x̃→ −∞, we find that

N(2)→
{

8Λâ2
0(−x̃)−1/4 +

(
16
3
Λâ0â1 − 1

4
π1/24(3s)−3/2I0â

2
0

)
(−x̃)−3/4

}
Ã∞ ei Θ̃∞

+ 1
4
π1/2

i(3s)
−1/2Λâ2

0

{
3J0â0θ̂0(−x̃)−13/8 +

(
Λ0â0θ̂1 + 3K0θ̂0â1

)
(−x̃)−17/8

}
ei Θ̃∞ ,

(B 9)

where Λ = 1
9
(−2s)−4/3Γ (1/3), while J0, I0, Λ0 and K0 are defined by (4.80) and

(4.86)–(4.88) respectively.
The function N(4) is given by (B18) of Wu et al. (1993), of which only the third

term is significant, yielding

N(4) →−
∫ +∞

0

∫ +∞

0

∫ +∞

0

ξη e−2sξ3−3sξ2(η+υ)−s(2υ3+3ξυ2) G(x̃; ξ, η + υ) dξ dη dυ, (B 10)

which is the same as (B.7) except for a factor of − 1
2
. Combining this with (B 4), (B 5),
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(B 9) and (B 2), we conclude that as x̃ → −∞, the right-hand side of (5.11) tends
to

i Υ̃

{
16
9

sin2θ cos2θ(2s)−4/3Γ
(

1
3

)
â2

0(−x̃)−1/4

+
(

32
27

sin2θ cos2θ(2s)−4/3Γ
(

1
3

)
â0â1 + 1

4
π1/2 cos22θ(3s)−3/2I0â

2
0

)
(−x̃)−3/4

}
Ã∞ ei Θ̃∞

− 1
18
π1/2Υ̃ sin2θ cos2θ(2s)−4/3(3s)−1/2Γ

(
1
3

)
â2

0{
3J0â0θ̂0(−x̃)−13/8 +

(
Λ0â0θ̂1 + 3K0θ̂0â1

)
(−x̃)−17/8

}
ei Θ̃∞ . (B 11)

Equating the coefficients of like powers in (B 1) and (B 11) gives

− 3
4
θ̂0 = 16

9
Γ
(

1
3

)
Υ̃ sin2θ cos 2θ(2s)−4/3|â0|2 , (B 12)

5
8

= − 1
6
π1/2Γ

(
1
3

)
Υ̃ sin2θ cos 2θ(3s)−1/2(2s)−4/3J0θ̂0|â0|2 ; (B 13)

− 1
4
θ̂1=

32
27
Υ̃ sin2θ cos2θ(2s)−4/3Γ

(
1
3

)
â0â1 − 1

4
π1/2Υ̃ cos22θ(3s)−3/2I0â

2
0 ,

(B 14)
9
8
â1=

1
18
π1/2Υ̃ sin2θ cos2θ(2s)−4/3(3s)−1/2Γ

(
1
3

)
â2

0(Λ0â0θ̂1 + 3K0θ̂0â1) .

(B 15)

It is noted that (B 12) and (B 13) are equivalent to (4.79) and (4.82), while (B 14)
and (B 15) are equivalent to (4.84) and (4.85). This shows that for the upstream
condition (5.13), both sides of (5.11) indeed have the same asymptotic behaviour as
x̃→ −∞.

Appendix C
In this appendix we show that the evolution equations derived in §§3–5, which

govern the three weakly nonlinear stages through which an initially linear pair of
oblique T-S waves evolve, are all contained within the nonlinear non-equilibrium
viscous critical layer amplitude equation, and how the former equations may be
derived as limiting forms of the latter.

The nonlinear non-equilibrium viscous critical layer amplitude equation may be
written as (Wu et al. 1993)

dĀ

dξ̄
= κ̄Ā− i γ̄

∫ ξ̄

−∞

∫ ξ̄1

−∞
K(ξ̄ − ξ̄1, ξ̄1 − ξ̄2|Λ)Ā(ξ̄1)Ā(ξ̄2)Ā

∗(ξ̄1 + ξ̄2 − ξ̄) dξ̄2 dξ̄1 , (C 1)

where ξ̄ is the long streamwise variable over which the amplitude evolves, Λ is the
viscous parameter and the coefficients κ̄ and γ̄, which in general can be complex
constants, are purely real in the long-wavelength limit of interest here. The kernel
function K is that given by Wu et al. (1993) and is reproduced here in Appendix A.
From the upper-branch scaling and definition of the viscous parameter we have that
Λ = σ−3/2.

The amplitude in the first, wavelength-shortening, nonlinear stage is governed by
the highly viscous limit (i.e. Λ→∞) of (C 1). This limit was worked out by Wu et al.
(1993). Substituting

x1 = σ1/2ξ̄, A = σ1/2Ā, κ = σ−1/2κ̄, (C 2)
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into (C 1) and using the results for the highly viscous limit of the integral nonlinear
term given in appendix B of Wu et al. (1993) we obtain

dA

dx1

= κA− i γ̄

(α0λ)8/3

(
2
3

)2/3
Γ
(

1
3

)
sin2 θ cos 2θA

∫ ∞
0

|A(x1 − ζ)|2 dζ (C 3)

which agrees with (3.2) provided we put

γ̄ = − Υ (α0λ)
8/3(

2
3

)2/3
Γ
(

1
3

)
sin2 θ cos 2θ

. (C 4)

In the WKBJ stage of evolution the solution is of the form

Ā = σ−7/8Â(x̂) ei σ−3/4Θ̂(x̂), (C 5)

where

x̂ = σ1/2ξ̄ − 1

κ
ln σ−3/8 + x̂0 (C 6)

is order one. Substituting (C 5) and (C 6) into (C 1), we obtain

i
dΘ̂

dx̂
= σ3/4

[
κ− d

dx̂
ln Â

]
− i γ̄

Â
N̂(x̂), (C 7)

where

N̂(x̂) = σ−4

∫ x̂

−∞

∫ x̂1

−∞
K(x̂− x̂1, x̂1 − x̂2|Λσ−3/2)Â(x̂1)Â(x̂2)Â

∗(x̂1 + x̂2 − x̂)

× ei σ−3/4[Θ̂(x̂1)+Θ̂(x̂2)−Θ̂(x̂1+x̂2−x̂)−Θ̂(x̂)] dx̂2 dx̂1 . (C 8)

The asymptotic expansion of N̂ can be derived following the procedure used
by Wu et al. (1993) to derive the viscous limit. To the order of approximation
needed here only the terms analogous to N(2) and N(4) (see their Appendix B)
of their derivation contribute to the evolution equations in this stage, with the
critical difference being that here higher-order contributions from these terms must
be retained. First introducing t̂1 = x̂ − x̂1 and η̂ = x̂1 − x̂2 into (C 8) and then,
following the general procedure in Wu et al. (1993), substituting

t̄1 = σ−3/4(α0λ)t̂1; t̄3 = σ−1(α0λ)
2/3t̂3; t̄4 = σ−1(α0λ)

2/3t̂4, (C 9)

into the relevant terms, we find the expansion of N̂ to the required order of approxi-
mation to be

N̂∼
(

2
3

)2/3
Γ
(

1
3

)
(α0λ)8/3

sin2 θ cos 2θÂ

∫ ∞
0

|Â(x̂− η̂)|2 dη̂

+
σ1/2

(α0λ)3

π1/2

8
(1 + cos θ) Â

∫ ∞
0

|Â(x̂− η̂)|2
η̂1/2

dη̂

− i σ3/4

(α0λ)11/3

π1/2

2

(
2
3

)2/3
Γ
(

1
3

)
sin2 θ cos 2θÂ

∫ ∞
0

|Â(x̂− η̂)|2
η̂1/2

[
Θ̂ ′(x̂)−Θ̂ ′(x̂− η̂)

]
dη̂.

(C 10)

Substituting this into (C 7) shows that the equations for the phase and amplitude
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in the WKBJ region are

dΘ̂

dx̂
=− γ̄

(α0λ)8/3

(
2
3

)2/3
Γ
(

1
3

)
sin2 θ cos 2θ

∫ ∞
0

|Â(x̂− η̂)|2 dη̂

− γ̄σ
1/2

(α0λ)3

π1/2

8
(1 + cos θ)

∫ ∞
0

|Â(x̂− η̂)|2
η̂1/2

dη̂, (C 11)

and

dÂ

dx̂
=κÂ− γ̄

(α0λ)11/3

π1/2

2

(
2
3

)2/3
Γ
(

1
3

)
sin2θ cos 2θÂ

×
∫ ∞

0

|Â(x̂− η̂)|2
η̂1/2

[
Θ̂ ′(x̂)−Θ̂ ′(x̂− η̂)

]
dη̂, (C 12)

which, upon using (C 4), give (4.69) and (4.70), respectively. As shown in §4 the
leading-order equations for the amplitude and phase functions can be combined to
arrive at a single equation for the modulus which is the same as (4.73).

In the final weakly nonlinear stage the disturbance evolves with the streamwise
variable

x̃ = (x̂c − x̂) /σ, (C 13)

and the scaled amplitude function

Ã = σ3/2Ā, (C 14)

of order one. Substituting these into (C 1) shows that the linear growth term is
now negligible to leading order due to the very fast spatial evolution in this stage.
The effective viscous parameter is now of order one so that the full non-equilibrium
nonlinear term is retained at leading order and the amplitude equation is

dÃ

dx̃
= − i γ̄

∫ x̃

−∞

∫ x̃1

−∞
K(x̃− x̃1, x̃1− x̃2|Λσ3/2)Ã(x̃1)Ã(x̃2)Ã

∗(x̃1 + x̃2− x̃) dx̃2 dx̃1. (C 15)

Non-equilibrium critical layer effects have a leading-order influence on the amplitude
evolution in this stage with the result that the solution develops the finite-distance
singularity originally derived by Goldstein & Choi (1989).

The analysis in this Appendix shows that a solution for the oblique T-S wave
amplitude, uniformly valid throughout the linear and weakly nonlinear regimes, is
governed by the non-equilibrium viscous nonlinear critical layer equation derived by
Wu et al. (1993).
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